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ABSTRACT

This paper defines path integrals in phase space without using a

time-division approach followed by a limiting process, thereby generalizing

a similar procedure used in configuration space. This is useful since the path
integral approach canﬂot always be formulated in configuration space (e.g.,
when the Hamiltonian is arbitrary) but can always be formulated in phase
space. The most general Gaussian measure, absorbing the quadratic portion of
the functional to be integrated, is constructed, and large classes of path
integrals are evaluated with respect to it., Applications are given to the
perturbation expansion and the semiclassical (WKB) expansion for arbitrary

Hamiltonians.
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I. INTRODUCTION

The quantum-mechanical propagator <‘1|‘, tb ‘qq . a) , or probability
amplitude that a particle at position ﬂ at time f; will be at position 7

at time tb , can be written as a phase space path integral:

<ULl tay= K f (2] “r;J {r‘thfﬂ H[W’ ‘Hﬂ*]}“*
(1)

where *4 is the classical Hamiltonian of the system, or a quantity suitably
related to itl, and ? is the space of phase space paths ('-] ,1») satisfying
q (f“) 2 qa and C' (tb) = 15 , with ?Uf) unrestricted, The integral is
usually defined by the time division procedure™, i,e,

K % c. : dﬁ....dm“olrodn,_.d

s wme| 2
mam:'-té).;o R2™H (214) (2)

«mpif3 4 ("—"'—ﬁz;,-)-H(ﬁ. Lk T

with qmn qb i qo g9, t g{’“ , and ‘k‘" e tb . We work in
one dimension to simplify the discussion. The results can be easily generalized.
The Einstein summation convention over repeated indices is used throughout.

The limiting process makes the scheme difficult to use for computaticnal
purposes, not to mention qﬁestions of mathematical legality. It has been done
away with in the case of the Wiener functional integralB; and the method was
later extended to Feynman path integrals in the configuration space of quantum
mechanicsa'g. The new formalism rests on defining what plays the role of a

measure in path space by its Fourier transform, which is a simple closed-form

e o




expression. This is all that is needed to completeiy define the object and
reduce many path integrals to ordinary definite integralslo. We do not treat
the mathematical problems here, as we are mainly concerned with developing
computational techniques.

The purpose of this paper is to extend this limiting-procedure-free
formalism to phase space. This is necessary not only from the point of view
of completeness, but also because phase space path integrals are more hasic
than configuration space path integrals. Indeed, the latter provide a solution
to the Schradinger equation only for Hamiltonian operators quadratic in the

6,11
£

momenta, whereas the former apply to arbitrary Hamiltonian operators a

useful generalization.

After constructing the most general Gaussian measure in phase space,
we evaluate large classes of path integrals with respect to it, and present
applications to the perturbation expansion and the semiclassical expansion _or

arbitrary Hamiltonians.

II. CONSTRUCTION OF THE PHASE SPACE MEASURE
We wish to construct the most general Gaussian measure W’(?,’) in phase

space, the one which will absorb the entire quadratic term in the functional to

be integrated. To be more specific, this measure will be equivalent to:

t
dw (4,9) ~,_<!. [—ﬁ:-f‘—:l]mr ff b{@tﬁ)a‘,(e) - H, (e, q 3 ()
(2] ta

H, (#9,t) = gu).zg +1 Wt +R®41 (%)

and F(, is the normalization factor, ensuring that:

falw(f,q) = | (5)
g
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_and ’r)‘ (f) ,, then the measure W’ yields the terms of a semiclassical (WKB)
" expansion of the propagator. The functions ? $ F , and -& then contain ﬂ [(—) ;
¢

It is readily observed that KD must be the propagator associated with the

Hamiltonian H‘, . The functions 9({') . -(:((') , and & () depend on the problem
investigated. If one wishes to write a path integral for a Hamiltonian of the |
farm Ho +A H| » where H" contains the terms beyond quadratic, tinen the

measure W enables one to obtain the propagatoi’ as a perturbation expansion

in powers of & . If, in a more useful application, one first expands the

action fynctional about the classical position and classical momentum, ﬁc(e)

and 4, (k) < an this will be further examined below. ! H
A proper way to define (and use) W~ without the time-slicing procedure
that (3) entails is to build its Fourier transform. The Fourier transform of W~

can be written as:

: Al M,97 -4 LY, 47 |
S(w' (}A,v) = _/ e i : dw (‘Pl‘i) 3 (‘) |

where }A and Vi are elements of J’(_ , the space of bounded measures on

the time interval T = [tq't;l. For example, if }‘l is induced by a function,

i.e. d)A ({') =F({’)M , then
<may 2 [awdp ; (7)
T :

if 'sA is as , the delta function at § , then
<35. oq7 > ﬁ(s) *

The fundamental observation is that if we put d}A (k\ (3 B(k)/"\ and
dy(k):A(t)/ﬁ , then the Fourier transform (6) 1is nothing other than
K/ K, , where K is the propagator corresponding to the auxiliary

(3)

Hamiltonian

H(,9,6) = W)ﬁ + 110" +RBpy +A®p + B9 (D




Both K and Ko can be calculated exactly given the associated classical paths,
Indeed, since both correspond to quadratic Hamiltonians, their semiclassical

(WKB) approximations are exact. The latter are given by:

‘h :
Kw«a 2 Zﬂ-?h ) “V(:}:S"")J e

where S is the action functional evaluated at the classical position and

momentum Cl and f , and M 1is the Van Vleck - Morette function -) S /3‘] 335
Thus, the problem of determining the phase space measure W ' reduces to solving
the classical problem for H and H, . Note that the quantym operators corres-

ponding to the 1’1 terms in H and H are the z~:yum|etr:t,zed12 .L(PQ.'. Q P)
We first state the main theorem, then we prove it.

THEOREM 1. The normalized Gaussian measure W’(or, )in phase space ? corres-
ponding to

dlp) ~ i [220] np 3 f [4940) - 30 #®
- L fyqre) - &u—)?u’) qt9] u:}

has the following Fourier transform13:

Fur(pd)= exp{-i <rA> -iv, 3> - G 116, tf)apapc)

_ik j f G({',t)dy(t)o\v(t) d. ff@ () av M)}y
(12)

(1)

.—.wr{-—.«lf’u’r’(t) a6 - i [faq Y (e p)aie )}

T TT c,3)

W Pe { [+0,q] mTe [t t] ‘ 1) =9a L&) =9,, (1)
' ?({') M&&}




(2) the normalization factor Ko is the propagator corresPonding to 'the Hamiltonian:

= A p* 4+ 1Py Q" + Law (PR QP ()

for which the WKB approximation is exact.

@ de(t) = (d}«(r) Av(t\) dad () = (JPM) : (“)

A

(4) —Y"(t) = (.q’tt)' ?({)) , the average path in ? with respect to the

measure

- (‘, o(k)z?co“)) ’ (17)

where q and fc° are the classical position and momentum corresponding

to H “ They are related by:

£, ( )’5—(;) [& _4w]9 . (12)

G, E)  Gt)
Yo« | 5, o
(t/ = a (el,(') Gfr(klt’)

(5)

is a Green function of the small disturbance operator in phase space corres-

ponding to H° g

5 -f(e) ~8(¢) - (20)

bR -—-&(t)-r% -Lat)

e SR SR, ‘,’) (21)

‘9(\:]{‘)15 independent of g and 4 .
o




(6) G‘ b(t t )15 the (symmetric) Green function of the small disturbance

operator in configuration space which vanishes at both endpoints:

e )4 . b GG
2% 30 = %&)4 40+ Rty - “ma?(e(])
i.e. 22

86, (64) = 3lE-); G ()5 Gy 40 G (685 Gy 6.

) 3 20. (23)

a(_{’ t')s 2 . S '] .

¢') o ].'w &) ] G, (6¢) (24)

- G (t ’c') . - &u—)][ 2 _&w)] G, (b ¢)
Jlelgte) L (25)
- %"( k) 5 (e-¢)

The <§ function term in (25) is always cancelled by a similar term. When
t‘gt' ’ GRB and G'I, are continuous, but G has a jump of magnitude 1:

t
[&-bt’ {:'-vk)c'( e (2¢)

Note that the measure W(’f,‘ﬂ does not split the path integral into an
integral over momentum space followed by an integral over configuration space,
each with its own measure. Thus one truly has a '"phase space" path integral.
However, the measure W induces in a natural manner measures \Afaband w’t on

configuration space alone and momentum space alone by
S:“"b(}‘)s g-w()a,o) ’ and S'-W’r (V) = 9"\«0‘(0,\’\. (27)

The measure Wg), in the configuration
space of paths such that Q(t‘)g 1.' and '1(('5) :qb is studied in Ref. 7.

Proof of Theorem 1

The Lagrangian L-° corresponding to Ho in (4) and the Lagrangian s
corresponding to the auxiliary H in (9) are:

o ibiiiaes it _ -
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L (4,4.¢) = Zi“&)[ﬁ A-Awg] - L Fogt - Bog, (2)

L4110 —‘—’—[; ~kwyq]” - LW (24)

The classical paths ("c and CI satisfy the Euler-Lagrange equations:
co
Q q.(6) = wlx) » e
Q q(o(t) P O ) (%‘)

where Q is a second-order linear differential operator:

~~

e
9 = ;&_1- 3%)()% &({’)-f- 4’(&\3(9) be )+J_’fz(#} (32)

and M({’) depends on A(t) and B(k) :

wlE) = A() -L BwgLe) + RIVAK) - AW ) (33)
wm 9”)

Both classical paths go through ‘7 at {"q and C’ at 62' . The substitutions
qQ b

G (4) = D(t)l-ﬂtﬁ)]\h ad 9 (H)- QJ%)[%}I%’J/?’ (34)

% -
eliminate the A/c\t' term in @, , and replace (30) and (31) by

A~

M
DD, (0= -ul®] %-&-)} (25)

Do, ,K=0, (3¢)

9(ta)

where




) 5"——2[._7: A (37) ;:f

d&*
with | i
(¢) = 7"«7"‘ “’31() 32 5 )+ L L g(e)-£(Y) t
Note that (B\Z) : j
S Lam fel=-aare, - - 69
|
Let D‘ (k) and V,l(i-) be two solutions of (36), subject to the boundary !1
conditions: ‘ ‘

D k)=l Dlyg)=o (vo)
D, (k) =0 D (t,) = -

The Wronskian W = D" Dz‘ "D‘ ].),_ is constant for equations of the form

? D(-\'):—.O . In this case the boundary conditions indicate that w is equal
to 1. Since W 1is different from O, D' and [7 arellinearly independent,
and the general solution of (36) is a linear combination of C? and ta_ o E
we define the antisymmetric kernel :f(k k! ) by:

J(£,4) = D (YD, (8 - D (4D, (+) (1)

then the classical path ﬁ can be written as
; co

9 (b)=30 [«1 Mn,) o m,.x)} ()
Co I({‘q,’cb) \ri_(?) \’au_)

The classical path ‘1 can be easily shown to be
&

9, (=g, &) - {361 [ U G (43)

' T \'3(5)
)
where G is the (symmetric) Green function of which vanishes at both

N~

endpoints:




@ G(T/t{);‘ (y({”t') 2 G (t'/{")"’ G (l'./{) (u‘f)

G(ka,'{);cf(l'b’{;);o : ((.f.g)

This Green function can be built from the solutions Dl and b—z_ of @ D =0 . ;
6,8,9 = t
¥e dg % " s '

G({/l{(>7— \T({'Q,G)J(* ,h)y{‘\’ '\') ¥ JH'((LV) T({'/&rh)\/‘l(\”t’)) (‘-l'()
—J({'q,L’L) l

Y( E’) being the Heaviside step function, equal to 1 for {'7 ¢ and 0 otherwise.
This can be verified by direct substitution. If W (5) is replaced by its
expression (33) in terms of A and B , and the A term is integrated by
parts (the integrated term vanishes), then the difference 15({—) of the
classical paths depends linearly on A and B as follows:

5(t) = 1.8-9,0 :.—-rfA(s)w(s,HA; :fB(s)V(S"‘MS (47) |

where

e FlabE D (43)
wi(s,t) = \f;% { S %ﬂ) k(o) Ee 1 Gs,t)

‘;‘; \/g;(t)ge;)' Gr(s,t). (49) |

As we established earlier, the Fourier transform of the measure W~ is the

G (s,*)

[

ratio K/Ko of the propagators corresponding to H and H, , which in turn
happened to be exactly equal to their WKB approximants. If d}((%} < B(‘()/k

and vy (-&)_:_ A(*)/{\ , then
O ]
6 ::.’i - -I:-/,- -/-L g @44
Fao -k o M‘;%'RTILHHL 4)dk o
fLa(chvéco;k'\(M’}

o

"
R

i
| N
{ 3
“
2
:
]
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The Van Vleck - Morette functions M and Mo are equal since M and H., differ
only by terms linear in ’P and “l . We give their value for completeness. It is:

M = Mc, = 8! ‘ (S—l> ;
: .T(h\‘h,) Vg({’a)g(k!’) . J

This can be easily proved. Indeed,

M e DQSC i (b?c({'a\ (Sl) "

= = 4
”bﬁa ()qb Pbc‘b -
since ,Pc [{'q) = _BS‘ /'bqa . The momentum corresponding to the Lagrangian |-
in (28) is

Ee a gu)l‘\ Ay -kt)q ] &)

~ -\ .
and hence ()P‘ (k‘Q\/'D“' = W\n “’a) D‘i‘ (\'q> / bqb . The result can then
be easily establised by using (42), (41), and (40), along with the fact that
the Wronskian of D‘ and D.‘_ is 1.
Substituting (28) and (29) in (50) yields:

T i A 2
m(e,m;x.”{ fﬂ(t 14 ()~ 4)5) ~A)].

x (408 +2§ (1) - Aw) - kO -2R©O9 (0]

- JBOTg @S] -1 s sw +2q o H}
.r % T <o )
(S

Now substituting for 15\(’) its expression in (47) yields the full explicit
dependence of g_w' (B/A) on A and B , which 1s of the form:

1
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Tor 0= 2p 24~ JIW Bt - [Fama
A J J

o i TV
IEACED B({’)A(&')d,l'a%'} . (s5)
Y

The various functions entering this expression are calculated below one by one
and found to be as given in the statement of the theorem. Since they will involve
small disturbance equations, we think it useful to first exhibit these equationms,

Equations of small disturbances
The small disturbance equation (or Jacobi equation, or equation of geodesic

deviation in the language of curved spaces) is that satisfied by a small deviation
from the classical path. Thus, since the Euler-Lagrange (or Hamilton) equations
yielding the classical path are obtained by setting the first variation of the
action functional equal to zero, the small disturbance equation is obtained by

setting the second variation of the action equal to zero. For Lagrangian actions,

it is

3 «(t) =0 ‘ (56)

A

where )8 is the small disturbance operator in configuration space:

,gz{zaj.e_éj —[i(’&-)}p\_ﬁ_’}:,li(&} (s7)
- CER VS A NELs PUS TE e i
::/c

For Hamiltonian actions, it is
o (°<<H> f (0) (53)
AN pu) 0

where C7 is the small disturbance operator in phase space:
A

e e




¢ 12 1

~2 B ~TH A d

O T W (<9 's
- ...'bQH' ”sz s 3 1

e
T
(,C‘ rbt 1:7( ~
fe |
In the case of f{o . )8 and 67 are given by (22) and (20). An interesting f
observation: the elements of (jy can be used to form ,2; as follows: :

8 - —foy [ewyr 4] M][ 41 (o)

Note also that ,é? and C;Z are related by 1
Lo PN

P S

i gue)
Calculation of the elements of the measure W

All the calculations below involve integrations by parts where the
integrated term vanishes due to (45). The comma denotes differentiation with i

)8 -wW 9 [G\)

respect to the variable indicated. Thus with reference to (55), we have:

The BB term

(H) 2q(,t') ffﬁ(:) M&(‘)]g’({ s)o(t!,s)ds

O

91s)
as ¢ ¢ o ] 2 L ey
Té)(s) Tk 53 AE )y Té_[—g&(suv(l/s)q ,-\Jls | |
- Qo(t g)+fo(so'({' S)fF(S)“l’W\'b [2(9 =
w4 g@ ~ RS } F)5) (¢2)
ds 9(9) q(s)

The operator between curly brackets can be easily shown to be W\ij (() @
i.e. ")8 . From (39), (45), and (49) we can establish the relation:
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A Tl - Slu-t). (¢3)

A

Substituting in (62), we have
G, (t4)=clkr)s m"\fgu)cdw G(%,e'). (6v) |
|

Therefore, G‘ ({’ A )19 indeed a Green functiom of )8 which vanishes at tk
/
and tb ’ Since it 1s symmetric, it is continuous along the diagonal t f .Q.E.D.

The AB term ’;
b ( L fb ‘ ' i
Gt 4 ) = wlt )+ )l A )]cr(\- ¢')

m B ls m[as . :
+f¢(c s).w AIECE ;%( s - rfa(s)&m

X Lw(t ,S)G'(’cls)}'s \a W\f 6\}’5 ({",s)djs (‘t, 3) (6 §)
= wit ,t)+9—(”§) am')]c(k ¢) - fwu ) 8, ott,s)
(€6)
w o Bt 5
= & kt)]a— (€,t') (¢7)

9it)

in view of (64) and (23). Q.E .D.
Using the specific expression [(64) with (46)] of G , we have:

G (ep) « T i»)[‘}\%)/g(e)) { L-J‘—’f) %u)]ij(m)a(k Y-t
+ Tlea &) Tek b)YV (K- ’c)] & 3’ fa,t) T, (&' b)Y (E-t)

T, (6 )T ()Y E-B] (c3)

It is readily verified that Cr has a discontinuity of magnitude 1 along the

diagonal { ._._t' (AZVW\ % G ({. (f) e | ~ For this, one only
e 1 »t)

Q
¢
i h




needs (41) and the fact that: the Wronskian of tﬂ and t%_ is 1. Q.E.D.

The AA term

G, (b4 = chw w(t,3)wit' W) [f(v) - w ‘;(("g]

S I T e S -
W\Jg('\r) w,v- M> AU (U> 3({/) )

| ( ] 2 [ _ D¢ :
+Mf%)&(’0) [w(g’v)u(t,v)]lv +j-(—t,5[,ay Ble ﬂw(U)‘

o £
3::\ ]—'Ot'

- be(’t’,‘Y)’,gv W (E ) dwr (H)
-

~R(t) ]we)«ﬁ- S(k-t)

Using (63) and (64), we have:

n

)th(%k (t)[‘w ({ & ']5“'t) S

)

which gives

@(tt)-g_w.[. &(e}] u)«é‘-”(‘TJB(&«v)

S M TG s 2 WY w §(E-t)
o L7 §9 w9

4
, A W) E y _ wo(t-t) (7))
3 3%) L3¢ *&(U] G () 9(t)
MS(%%’)

glt);lt) Di ‘“Mal' Q(&] (e - i (72)

Ustng the specific expression [(64) with (46)] of éi\L , we find that




the 5. function term cancels another similar term (due to the fact that the

Wronskian of D and t) is 1) and we are left with the following expression
/

for C; ;- symmetric and continuous along the diagonal {: t

P

G, (0)= M7 ) (e, 1) [Tk, £) TE RINEISE)
Vj(d;(k\
F Tk ) T8O T, (G YHIEEIVE)

g 3’,& tQ,jC)-S:t/ (t' /h:)_)
+ tat (73)

where Y(k) = ~h(t) + 400 /9(6)  amt F(EE)vtul = FLEED AL

The B term

a(¢t ! (¢ — e R
glt) = (eJ+f AL VIRITY g'”]

+wm [ M “,e)fi (9, ( (+,6) + (z{)? (t') 7t ¢)
T Ju)
3 (1(0 (‘r) 13 ({’\7 )]
= ‘Lo(t) + m{f—ﬁ,)oﬂb{’) gtﬂ“(’r') 3 1“@) (74)

by virtue of (31). Q.E.D.




The A term

G ?(6)[9‘_-%}1 (6) +de w1, (F)[fi£) - mEL)] %

j(l)
+def< [w)ww £)9 (%)H%(e)‘; (¢)w . (6t)
T
-4, ({)wk,(k&)]

Tk L ;
"'ﬂl”'*“)]q N fglt)wut)%,q“u)

= /F“ (¢) | | (75)

by virtue of (31) and the fact that T%° ;,( ?)LD‘/ ! ﬁ-)q : « Q.E.D.
Co

The relations we have derived so far make it simple to verify that J%j({ ,*/)
in (19) is indeed a Green function of the small disturbance operator (20) in
phase space. The "11" term of the resulting metrix is 5~(¥ 't')because of (67)
and (60). The "12" term is 0 because of'(ZS), (60), and the fact that
(D/d[— + D/(,[ )5({ & ) . The "21" term is O because of (67).
Finally, the "22" term is (S(’: tf ) because of (71). The fact that (5?{1) is
the average path will be proved later in the paper.

Example 1: The Free Particle
For a free particle, 4\‘“) = f(('):O ’ "(() = | ’ Ho = 1’2/2""‘ ’
A 2 ~md /A, D ()=l L, Datda byt L TUE)E-E

and rﬂ 2 “A/.T' . The covariance of the corresponding measure in phase

space is (19), where:




‘. E ; k iy ‘. F

wmT |

' :

ol <, i el i - 7 I

(Lt - (t,-E)Y(k-t) - (-6 V(-1 (77) |
T

We have )g C; (k {' = (&"{' . The average position and momentum are
= Ay "t
the classical ones:

9 (¢ - A, (t-ta) + q, (to-t) (74)
co T

b)) - Pt (o)

The Wiener measure for a free particle in Brownian motion, defined on the

configuration space of paths 'é_ = %‘I((’) e‘\T.= [ﬁ\,h] ‘ Q((”o) & 0’ 9 ( *\1) v v G J}

can be readily extended to the phase space defined by

?_ = 51 ['{5»(&'),‘1(&)'] n T = ﬂ«.h',\ ‘ c,(&v“) =0, q(e)) and f,(f) wwwluc e d j
(1)

by letting '&b - O . The covariance ‘%{_ ((?,t‘) is then

f / g . e
r'v;[”’m\/“*)*“_ t)Y t) Yit-t)

Y (k) -

- Yit'-t) o
(R2)

The "11" term is a (symmetric) Green function of the small disturbance operator |




-—W\Azldk; such that G(l‘all:): O . It 1s discussed in Refs. 4-6.

Example 2: The Harmonic Oscillator

For a harmonic oscillator, f’- (H &, ((—) =) + £t)= mewo’
<= 'pz/zm ymwit/z LW @k W) L DU el h),
Dﬂ((f) W hmaw (b -4), T(EL) = 0 e 0 (L'~ €) :

and M= mu)/AM\wT . The covariance of the corresponding measure in

phase space is (19), with:

Y. (bt ) Al b YYE-E) + e byt avm w(f-ta) Vi E-F)
mw AT LB)

Gy, (Ei

/;,;nw-('cb.-f) tm o (£~ ba) Y (-£) = cow (b, E D amuw(t-t) Y (L' )
AT (?{)

a (‘71}") %

Gr (l:lt() e LCWN -+ Hcow(t"ta) Y (k- t) + e (1) cow (E-ta )V/“"E)}

s

(2-)
We have :‘g G’a“ (E,\") = B(k '\") . The average position and momentum are
the classical o:;es: :
< “ \ . o ” -
4 (4 = (ana®) ' [§ timis (64) g i t) | (0)
Co .

/Pc ({’) = MW (MWT)"[ﬁbww({«{«>__ 7“ C\Dw({‘l;{—)] (27)




III. PATH INTEGRATION IN PHASE SPACE

1
We now show how to carry out the path integral of a cylindrical functional _1
with respect to an arbitrary measure in phase space given by its Fourier trans-~

form. A cylindrical functional is one which depends on only a finite number of !
terms of the form (},\'tl7 or <\’,1;7 , 1.e. f‘j({f)o\)ﬂ({')
o [y Av(t). | ’

T

THEOREM 2. Let W be a measure in phase space ? defined by its Fourier
transform ‘34w' ()r,\)) . A cylindrical functional F on ? can be inte-
grated over f? with respect to the measure W by reducing it to an or-

dinary integral as follows:

i e i

I = f F(< P‘tc'7/‘“/<}A"‘-o'>/<v1’1’7l ,(VM /1’7 o\v(r/‘])
4
= f F(\A”.\.,U\n,’\’],,..,'\rn)tlu‘.‘.c\»\“ C.\I\)" ~~\6\l\fw\ (ZT{)’“’W‘
rRVH’M
n | m
X/ (}'w-(’ts./b\‘+..~+i}lw”vl\/‘+...-«-A) VM)-
rb\-th\
(! (A UL, PR PLP L T L ]
xMP,{(‘,u'-r...-r u“+’14)"+ wk

(21)

Proof
This proof is similar to the ones used for similar formulas in configu-
ration space path integrals without limiting procedure5'7. Consider the linear

continuous mapping Pn " H
)
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g 1 i gt

N i MM——*’ Mr)W‘W{

. d
(35)
Under this mapping, we have
e e P
RV\4W\ -
where W‘p " is the image of W~ under P . This image is a measure in
n, ™
'Rmm . By theoremj, EFW*P (% "'\) \-)VJ’ [ Pn = ", "1)] vhere ’g ¢ R"
l\
é IR , and P is the transpose mapping from IR“*M to J'L s the
space of bounded measures on the time interval T = ["a ] . We have:

M

< i/q),e,m(q,?)7 = < ((5/”1) N (\A,‘\))7
LGN e U e e S

<(¢)‘,;,”l'i‘/“); (9,47 (D)

< P,,'m (%91); (2,

Vi

~N

and hence Pn o (4; "n (E }",\ ¢ 4“ V3) . Therefore:

1

b (0 T Pl 7)

n,w

(2,.y"’ YRR P R T

i\

X J Mr (&%&\A‘ T ;'(P\I'a) [_'Tw" (%I\A“ 'N]d\}:‘)cl‘i"” bl""l‘(n)Q. J")m
X (42)




Corollary 1

1t F depends only on 'P (resp. ‘] ), the path integral reduces to an

integral over momentum (resp. configuration) space. In compressed notation:

S F(<v, 47)dw (4,9) ] ar F(.v)f (0,4) e "q'vo\q (43)
3) ﬂ\)m 210 Rm

f+%<r¢ﬂAJW7>,f Fux[?wuﬁﬂoyég“ag (94)
? R" '“) R"

Thus, in the second case, the measure W (r, ‘]) in phase space has the same

effect as the measure W;“ ([‘) in the configuration space tﬂi\; of paths

such that ‘I(*'a\‘% and q(kb);qb , 1.e.

f‘:(<r,ﬁ>)0‘v’(m)= f F (< pwg7) dory () (as)
Y (;M’

‘6 and W, b were introduced and studied in Ref. 7.
qb .

Moments formula

f <}A.,‘]7“‘<}“mcl7<yw')’7 ~-.<\)M, r> Cl\Ar(r'/(i)
o

AW A ) " { “i
TP el 1)
V5 A3 A"

Proof

Y210

Theorem 2 and the fact that fx e‘ha‘ c WA S (x\ are needed.

R




Application to the Gaussian Measure

If we apply Theorem 2 to the Gaussian measure defined in (12) in Theorem
1, we obtain:

K

f 3 (4)“',97, vy L Ra, 92,V 77, e, < Ve H7 Jw(f,,r,)

: f F g,y M, Wy Van) Aot iy Ay ee har,
RO Claai kY. bW ak e

< orp £ 3 (ST) iAoy ) (47)
—2 (we ™) (we-ag)(vg- &)

+ (w—u, wice'e w"y% (u;—a:)(vg"‘ﬁ}

where a4 = <}A'{/-Z'> (‘fﬁ)
/6'4' E <V&‘/-’F7 ((i‘l)
Wi = jf Gy, (4,5) d/»\‘,(g)d),}(v) (nxn) (1ee)
W
€5 ) GEeinibblng (om el
Y E
- " ¢ A%NAY- (% (W\Xw) (102)
Vij =~.-,j c,a,(sr,wowmm&m
g g ¥~CwW'E (mew) o (193)

~
C being the transpose of C
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Proof
The proof is straightforward with repeated use of the formula

/ (‘f(b““‘)‘e/)(ly (—%Aié“i“i)”l“u"‘o\”“ (‘0“)

R" l
.___—)—— q(w) ex?( )G\M ; Re (Adwvj) 20 YueR"
Cl (54 g ok
where € = l)‘ b‘ (A’W . Here (w)= e il ok annile y

f""(’(“’*z”’"\d* = (—Tf/a\\’bw\» (v /ta)  Re(ay<o  (105)

If the functional to be integrated does not have a 1) dependence, then j

Corollary 1 gives:

[ F(<Paa7, 1 <pa,a7) dar (g 4) |
G . ’1
= é{ ‘F(<F‘/q7/ <f““fl7) ;,("1) (!0(:)

'y ;

Flog, o o) Ay oee di, J 3 u—o }
(2“”\ (OLH\)) Ms)i oy W ) \A Q )( 33

which is formula (59) in Ref. 7. If F' has no ? dependence, then:

/1 ($901 7 ) <V, p2 )t ()

F vy .o ) M) 1o M e y
w " T
[{w\ (2 i) = (a\c{'v)"‘ r{ ) (v )( }
(107)

r——
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Averages and covariances

The moments formula (96) applied to the Gaussian measure W readily

gives the average position and momentum for W~




r. fonde e s s

— -

S 9V dus (g9) = T ) (io3) - @
&

f 1’((—) M (p.9q)= '13(&_) : (109) yi
¥
indicating that ﬁ; and 9 were correctly identified in the statement of

Theorem 1. The covariances are: i

[ay- ) [q)-ge ) des (g,) = iR Gy (b4) (o) f

¥

f s*“ﬂlw) (*)]o\wtm), b6,k +') | () ;‘
? 3
f Ci(k\jll‘, %“’l))é’w(‘?,‘i): & Z(ht') Cu2)

¥

C; (¢ k') is the only covariance not to be continuous 3<raossthe diagonal
/
£ = t' . It has a jump of magnitude 1 there, as established earlier. Thus, the
correlation between ‘P and ﬁ at a given time t with respect to the measure

W  can only be established to within i‘R.

The Set of "Important Paths"
The variances A h € ng (het ) and 4 R 6}, (k‘{ ) , squares of the
"standard deviations" [S(?( t)and lﬁ;’(t), provide a measure® of the degree of

dispersion of the Feynman paths about the average position and momentum. We now
calculate A‘) and AP for the free particle and the harmonic oscillator,

using the results established earlier for these two systems.

R ———




Free. ﬁarh( le \/7, ’%
(n3) |

a)(h,'f)]

sa KE=E
Aq () :[4)‘\ =

Apt) = [’L’E\_@.]\h’ (11v)

T

(A@Aq)(&) = % [({'.’ta)(tb’{')]\’t (“ g) [,

Harmonic oscillator

\"7. |

Choaon o (8- 0) A w (b - ba) |

M [ G o | (W M
. |

c -A 1w (Fp - 6) eow (E-ta) x |
Aq)(k);t A e Ll “] (w1)
AN : f

(A¥-A7)(k)= h [szu—ra)WM(kw)j"‘ (113)
2| pmwT)

In both instances, we have:

——

—

(Ap. 8q) () € 3; * (14)

e

A first glance at this relation might give the impression that we have
obtained the uncertainty principle backwards. In fact, this relation has nothing to
do with the uncertainty principle. If [XC‘ and ZX.F are calculated with
respect to’v/(q/t) and (b (P'£> , the wave functions of the particles in
configuration and momentum spaces at time 't , then they reflect the effect
of measurement, and (APAC,)(QZ*\/L But if Ac] and Ats are calculated
with respect to the phase space measure vr(p,q), then they simply reflect

which paths are weighed more heavily (i.e. contribute the most) in the sum over

paths. To be more precise, they determine how far one must deviate from the
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average (here, classical) path to still find paths which contribute appreciably

to the sum over paths. In these two cases (as in most cases), these "important"

paths are so close to the average path in phase space that A(; & Acl is 4

always extremely small -- in fact, never larger than ‘K//g, > |
Note that the average square velocity in configuration space is I

infinite, indicating that the "important" paths in configuration space are the

nondifferentiable ones, a well-known result. For example, in the case of the

free particle,

2 . . o - j |
[t = f T30 -] o 1) = o 2[00 716t
5 -

S A YA (T3 I e hmdte-e)]
>t ppot! t>¢ 3
(i20)

— 0

Comparison with (114) shows that we do not have ZSP (() = A f“%(é);
nor should we expect it, since no relationship is assumed between ’r and 7

in the unrestricted sum over paths in phase space.

IV. APPLICATIONS

1. Perturbation Expansion
The propagator corresponding to F1 = F‘o + X F\‘ , where P\“ is given - i
M A Ao A
by (15), is:

. ‘tb
KRN E koj(’ﬁ(“ [‘if‘f er(k),q(&),k]cw] ds (£,9) (121
. :f)

where fi‘ 1s the classical equivalent1 of ¥%‘ , and W is defined in (12).

AN
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This is a direct application of Theorem 1. By expanding the exponential and
carrying out the resulting path integrals by use of the moments formula.(96), one .

obtains the propagator as a power series in X . ¢

2. Semiclassical Expansion

A more useful application of Theorem 1 is to use it to expand the ratio

of the propagator to its WKB approximation in a power series in ‘ﬁ 3

K = Kug (1 + 5K+ KK, + 0 (122)

This is the semiclassical expansion, treated in configuration space in Refs.

6, 8, and 9. The terms kk are "doable" path integrals of cylindrical func-
tionals, which can be evaluated using (96). Such an expansion has been used

to shed some light on the anharmonic oscillator6’9. Sometimes, due to the pecu-
liarities of the Hamiltonian, a configuration space path integral scheme is g
not possible. A phase space path integral scheme is always possible. We now
show how to generalize the path integral treatment of the semiclassical

expansion to arbitrary Hamiltonians.

THEOREM 3. The propagator corresponding to an arbitrary }4 [ see Eq. (1)]

can be expressed as the following path integral:

K = Kwk(}f@xri%ﬂ(‘)”{n)(%,‘g)} dw (9, x) (123)
7

where

g« (s I o (s ] G

RPN ’)‘]ﬂ 'bc'b




@ (1,9) < o “xm/a(@ T2l 6] | (k) = x (h)0,
w ) w:owﬂ\idac\} (12g)

(3) Q(‘L l‘“) is an operator resulting from the expansion of the action functional
/
about the classical path (r](, P‘>

S@a,3) = S(x+q, 9+¢)
= S@. 5 + S'(4., b)) + 5 5, 1) ()
+ QL (q,, p)(%1p) (12¢)

(4) The Gaussian measure WS 1s as in Theorem 1, with

3 'H \ (127)
1

!

|

i —ﬂ’; 24,
f ot 1

?_tﬁ\ : (12%)
f?;t,l— ﬁr‘]‘

1\

f(e)

t A
) ' H (1746
kv o \ i 174)

1e
) P
The path integral can be evaluated by expa b

N

S~0

which can then be rearranged to yield a power series in ﬁ where the terms

depend only on the classical path (Ci( ’f() ;

Proof

FIwe ) '

In the expansion (126) of the action, the term S (QUF( )()“ g)
is 0 by definition of the classical path (‘i‘ /Q’() (it yields Hamilton's
equations). The term S" (q(/;r( ) (ylv) /1 : is

ding the exponential in a power series,




200 (3

where éjr is the small disturbance operator (59). Expanding this term,

i?tegr;gng the "-’i f x (&) v (t)AX  term by parts to get

T_-a‘a(t)j(ﬂou' i , and lumping the resulting expression (quadratic
in x and ) into the measure by using Theorem 1, yields the desired

result. The 4 in the denominator will always be cancelled by higher powers

of ‘A in the numerator, due to the fact that the moments formula needed to
evaluate the various path integrals arising in the expansion of the exponential

in (123) yields products of covariances, each of which is multiplied by A 6'8'9.

V. CONCLUSION

The generalization of the path integral scheme to arbitrary Hamiltonians,
which can only be done in phase space, is best carried out without the limiting
process which makes the integrals difficult - to compute. This paper has
built Gaussian phase space measures which do not require any reference to such
a limiting process, shown how to integrate with respect to them, and given
examples of how these measures can be of use in solving problems. It would be
useful to find non-Gaussian measures, which would absorb larger parts of the

functionals to be integrated.
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FOOTNOTES

1. In most cases of physical interest, e.g. when the quantum Hamiltonian
operator is ﬁ = [E — (C/c)A (g)lz /QM +e @(9\ . H in (1) is the
classical Hamiltonian }1‘ . For stronger couplings of Q  and E? ,» €.g. when
there is a metric 3(58\ to be considered, '}% in (1)‘;s of the form

He +O(’6\Z) . In M. M. Mizrahi, J. Math. Phys. 16 (1975), 2201-2206,
it was shown that H ~ could be the Weyl transform of Ej . Other possibilities,

all yielding the same propagator, are being investigated. At any rate, we always
have H = f%c A7 C)(’KI) for Hermitian H s . In this paper, we assume
-~

that H - H_ .

2. See, e.g., R. P. Feynman, Phys. Rev. 84 (1951), 108-128, Appendix B; H. Davies,
Proc. Camb. Phil. Soc. 59 (1963), 147-155; C. Garrod, Rev. Mod. Phys. 38 (1966),
483-494; and M. M. Mizrahi, op. cit.

3. See, e.g., N. Bourbaki, Eleéments de Mathématiqggs (Hermann, Paris, 1969),
Vol. XXXV, Book VI, Chap. IX.

4. C. DeWitt-Morette, Comm. Math. Phys. 28 (1972), 47-67.

5. C. DeWitt-Morette, Comm. Math. Phys. 37 (1974), 63-81.

6. M. M. Mizrahi, "An Investigation of the Feynman Path Integral Formulation
of Quantum Mechanics", Ph.D. dissertation, the University ol Texas at Austin,
August 1975, unpublished.

7. M. M. Mizrahi, J. Math. Phys. 17 (1976), 566-575.

8. C. DeWitt-Morette, Ann. of Phys. 97 (1976), 367-399.

'




9. M. M. Mizrahi, "WKB Expansions by Path Integralé, With Applications to the
Anharmonic Oscillator", preprint,University of Texas at Austin and Center for

Naval Analyses:iof the University of Rochester.

10. Only in the case of the Wiener integral (no "i'"s in the exponent) is a
bona fide measure obtained. In the case of the Feynman path integral, the
imaginary CGaussian measures on ﬁ(n , building blocks of the promeasure one
hopes to turn into a measure, are not bounded. This fact makes this attempt

at mathematical legalization fall through. However, when one works with the
Fourier transforms of ‘the promeasure, the boundedness requirement is no longer
needed, and progress can be made for computational purposes. C. DeWitt-Morette
calls the resulting objects "pseudomeasures", P. Kree [Bull. Soc. Math. France
46 (1976), 163-162] calls them "prodistributions”. For simplicity we call

them "measures", as they are formally used as such.
11. M. M. Mizrahi, J. Math. Phys. 16 (1975), 2201-2206.

12, This is a very simple application of more general restrictions on the use
of the given WKB approximation formula to a certain class of correspondence

rules between the classical and quantum Hamiltonians, found in M. M. Mizrahi,

J. Math. Phys. 18 (1977), 786-790.

13. In "Path Integration in Phase Space', by C. DeWitt-Morette, A. Maheshwari,

and B. Nelson, preprint (to appear in Gen. Rel. and Grav.), a similar measure

is presented using a different approach. This paper and the present one,

written independently, complement each other and should be read concurrently.

14. This formula can be proved by path integrals -- see Ref. 7.
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Addenda to M.M. Mizrahi's "Phase Space Path Integrals, Without Limiting Procedure"

APPENDIX A

Intuitive Justification of Theorem 1 and of Path Integration Without Limiting

Procedure
n

A Gaussian measure on ‘R which can be written as

Li(y) = an) (k) oy (-1 Cyo) Ay by, ()

has as its Fourier transform the exponential of a quadratic form involving the

inverse of the matrix C :

(FO0= [ ™ arG) < enp[-4 (] 9

How does this carry over to infinite-dimensional spaces? This is the
question answered in Theorem 1. The phase space measure "’(fﬂ) in (11), after

integrations by parts, can be written as:

du(pa)~ K[ «] MET {f(%) PM)Q (:»((3)& (a3
+ [ 46)-9, ¢ (t.)]}v

where Q.is the operator defined in (20). 013 seen to play the role of the
-

matrix C above. Therefore, by analogy, one expects the Fourier transform

of W to be the exponential of a quadratic form involving the inverse of 0 .

o~

i.e., one of the Green functions of a., so that
Pl

f(?‘t"j(t,t')ﬁu:'= (') o U (AV)
T o~

!




|
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This is precisely what was proved. Which Green function is used depends on the
path space considered (for example, in the free particle case we saw that

consideration of the space ?_ instead of ‘y led to a Green function ‘9_ i
different from 9 ). The terms involving q and ? enter when the average i
path is non-zero. The reason why 0 was called the small disturbance operator

in Theorem 1 is that this is what 1t is when the action is expanded about tiw

classical path, as we have seen. ;

To illustrate this intuitive justification further, we consider the free-
particle measure w-o.b in configuration space. It is ( N is the "normalization" {

necessary in the time-slicing approach):

o, (9) ~ [%&] hp{;;?‘ jé]z({')c)k} : (A5)

which can be rewritten as:

da, (q) ~ [%]«P{ﬁlquf)(—m%)q(e)o\k
+4m [ﬁ ‘I({'b) ?qﬁ({i)]} (Al)

The Fourier transform of w;kindeed has as its covariance an inverse ol
-—Mdt/dkt, namelv the Green function G“kin (7¢ 16. The form (Ab) can be
easily generalized to the more general configuration space measure w b(1) induced
by \d’(',)in (\)) - W) d/o\k is replaced by ,8 in (‘ll) -- as proved in (IZ(«\)—- aud

the covariance is G'. the Green function of ,8 introduced in theorem 1.




le double integral, corresponding to the double summation in (Ao , can be easily

obtained by replacing (q(k) 'U')) in (AB) by fa(t" k') (Q(‘t’) r"t") a“”-
T
16

In the case of the free particle in momentum space, a rare case where a measure

in momentum space alone can be used, we have

o (p) ~ [S] om [ 2, J4700M].

-
The operator corresponding to C is then simply the constant WA . Its inverse
in the sense of (Aﬁ) is the constant M/T. It is the negative of 6' (t,t') for the

free particle E n because ‘2‘“ appears with a different sign in 1)
9.




Insert p. 27 after line 3.
|

Calculation of Ko €
K , the propagator corresponding to H in (\ﬂ ,is given exactly by
® M 0
its WKB approximation. Thus, we only need to calculate the classical action. i

The action functional is: r

S0a)= Suanse s [ {75 Ta@-Aehe] - Rogo)e
T
=t 1[1(&);8 qleyak + 2 iilz. [ 4(&)-Liw)g,)

- s Tatky -4,
g(ka)
where x is the operator L‘ll). This can be easily established by integrations
o Q
by parts of the i and (?Iyterms. At the classical path 1 , the first term
(4]

(lllm)

vanishes since 81 = Qﬁ =0, and only the integrated term remains. (lf-l) gives
V) ®

q ir terms of the kernel J , and we get:

o

W J.(%,%) (ke
S°[q]="“ b / 1 b ﬂ_.." -k (&) ChAy
co z { 8&0[ Tlo by 230t "] (721 )

v, ‘1.‘ [ T (h,h,) 'a_@ —&(h)] B 29,9, )
N Tlee) 290 T b) Ve gits, )
where we have used the fact that J' (l’a,l’..): (&ht—»‘l Note that
I Urq,tb),b(ﬂand that I (ka kb\ D({—‘) (I denotes derivative with respe

to ith argument). Finally:

Ma
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